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follows from the work of both authors and is used by Tomko to obtain iy for
some special cases.

In this paper we use real analysis and an argument more related to Tomko's
than to Cohen’s. The transforms and limit results arc obtained by linear
algebra using matrices related to the transition probability matrix of the
embedded Markov chain.

The basic idea of our method of deriving the recursive relation (2) is due to
Rade ([3], p. 452).

2. Linear equations for transforms

Groups of customers arrive in a Poisson process with intensity 2. A group
contains j individuals with probability pj, j = 1,2,-+. If the queue capacity is
insuficient, then as many customers as possible join the queue while the rest are
Jost. A finite system size n = 2 (n—1 waiting places) is supposed. The successive
service times are independent and have distribution function F. Consider the
system at an instant when the service of a customer has just ended and j
customers are in the system, not including the one just leaving, j=0,
1,+,n— 1, Let Y% be the time that clapses until for the first time agam k
customers are in dle system right after the service of a customer, k= 0,1,
n—1, and let X'} be the number of service phases during this time.

Now set

Puz) =exp {—M (1 - 12-"'1 pﬂ")}.

which represents the pr.g.f. of the number of arriving customers in an interval
of length u;

OO frl, r=0,1,-,n =1,

®
o) = ‘E pPO) kY, r=n,
=

0, elsewhere;

and
Irals) = f & o) dF (u).
The Laplace-Stieltjes transform of F is
F(9) = g0(s) = J; " e dF Q).

We take interest first in
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1. Introduction

We will treat a service system with finite waiting room and such that the
input is a lised Poisson process. The joint distribution of

the time and the number of served between of states in
the embedded Markov chain of the system is studied. Special attention will

~ e given to transitions from j customers to k with j > k. Cohen [1] and Tomko

51 have studied the busy penod for ordinary Poisson input. Cohen uses a

and i in the plex plane. A formula for the

Laplace-Stieltjes transform of the busy period distribution is obtained using

contour integrals. Tomko uses real analysis and gives a limit theorem for the

busy period distribution, which in the present paper is generalised to a two-
ional form. The function

3 = el {RGQ - 2 -3,

where sty is the mean of a busy period given N waiting places, F the service time
d.f., Fits Laplace-Sticltjes transform, x its mean and 2 the intensity of arrival,
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Foox) = PV < 1 0 (XD =],

By conditioning with respect to the time u of the service of the first customer,
to the number r of admitted customers during this time, and by iterating from
u, using the Markov property, we get

R0 = [ R,z 1,
0

B = J; z D) FE -yt — 5 — D dF@), J 2 1,322,

r’t+ l -4
I Define
l, Fs,%) = f e dE ).
0
Then (1) gives
i Es, D) = Gerr-pm-AhJZ L
n=J
Esx) = T Ges®) Poaalsx =1, j 21, x22.
ril: o |
Now we may obtain the transform "a

Bon) = E e (=¥ = T 2.

We will in the sequel consider only s =0 and 0 < z < 1. Putting z = ¢™" we
get the two-dimensional Laplace-Stieltjes transform of (Y{%, X{%). Now (2)
gives

i D(5,2) = 2054 1-yu-fS) + 2 2 E 257G e (O ES a5 x -1 2 1

1' r#kﬂ——[

| For j =0 we have to use a special argument, looking at the time to the next
L arrival and the number of customers then arriving. We obtain

(3); R ;:‘ s?’zﬁ P2

(%) 3289 [min,n — k= ) (roaatss )= D + 11

n=j
B, = 200s 1O+ 2 2oaef) B-as,2) 155 S0 - 1.

=0
r#kt1-]

|
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The case k = n — 1 is special, as is seen. For every fixed k (3) defines a linear
system of equations of order n. With matrix formulation we write

A5, 2) = 4L(5,2) B™Gs, 2) + ¢s, 2).

Here
B (B BT
and
o = [b(n, k), 20k -1 20k-1.0-20*** 20,n=1-1,0, -+, 01",
where " !

b(n, k) =[1 —min(l,n — k —1)] ( E p,) J2E(s) [(s + 2).

The n x n matrix 4,"has clement {4{"},, in row j and column h, j,h = 0,1,
+++,n — 1, according to

Apul(s+4),j=0,1shsn-2,

@
o) mingn - k-0 (£ 5). 20960 - 0o,
{4a= s
ZGh-jr1n-fh I # 0, h# b, hzj—1,
0, elsewhere.

The solution of (3) then becomes

@ A6, = A~ 406, os,2).
To solve (3) one need not, however, use all n equations simultaneously.

B B B, 3| &
may be determined from the last n — k — 1 equations of (3). Then one obtains [
£ ..., B by treating the former as constants. 48
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@ 2w () )
'm AR z),u.z)=ro_n= —E ),
one may obtain all moments of the distribution of (¥}, X /}), insofar as they
exist, from systems with matrix of cocfficients I — 4{(0,1).
3. A limit theorem

We will give an example of the use of (5). We take k =0, which is no
restriction as far as the “lower” part of F,""is concerned. We shall prove the
following theorem, for n = 2.

Theorem. If F(0) =0, then
lim P(PQ)" ' X <x)=1—¢"% x20.
A=o .

If in addition p = [§ t dF(f) < co, then
lim POF()" X {R<x, FOY' ™' Y{9<y)=1—exp{—min(x, y [}, (x,1) 2(0,0).
A=

The second limit defines a singular distribution in R?, an exponential dis-
tribution on the half-line y = ux, x = 0.

Proof. Puta,=g,,., and b,=g,,. We have

1—za, - za, —2zG,_, —zb,—y
—za, l-za, -+ —za,.5 —2zb, ,
B o=| ° er ok bical,
0 0 1—zay —zb,
0 0 —zay 1-zb,

Now we operate on B,.,. First we add to each column all the subsequent
columns, using X"-}a, + b,, = b,. Then we subtract from each row the row
immediately below, using b, — b, ; = a;, and obtain

Let Ay(s,z) be the submatrix formed from A" by using the last N rows 2a9 za;=1 za; 2053 2,
and columns, N =1,2,-,n—k—1. Put By(s,z) for the determinant of 0 za, za,—1 PY— za,_5
I — Ay(s,z). Then Cramer’s rule and an elementary development of the deter-
minant gives B,_y(5;2) = 0 0 209 Z8p-5  Z0n-4

2 E(s + 2)YB,_y—j-4(s5,2) 3 $ B H
5 B () =TT P Tk oy =k — 1.
) ks k(5:2) Byroa(5:2) J 0 0 0 S s
(Put B, =1.) By differentiating (3), using, e.g., 1—2zby, 1-—12zb, 1—zby 1—zby 1—2zby
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By developing B,_, along the first column we get
© B, 1(8,2) = 2a0($)B,-5(5, 2) + (= 1)'(1 = zbo($)) Da-2(5,2),

where D,_, is the determinant obtained by deleting the first column and the
Jast row. We have

zay(s) = zF(s +7)
and
1= zbo(s) = 1 — zF(s).

Introducing (6) in (5) for j = 1 and dividing by zA(s + 2)B,- (s, z) we obtain .
(= 11 = 2F(s)) D, (5, 2)
2F(s + DB, —3(5,2)

Put m = m,(4) = F(Zy'~'. We have

(M dj(sm,e™™) # #
. —wm Foy-? 4) 1 — e="™F(sm)

We have to show that the limit of (7), as A — oo, is w + us. We have m — F(0)*~*
=0, ding to ion. An i of the input probabilities
o+ () shows that they all tend to 0 as 2 — oo, for fixed u > 0. Thus the first
factor in (7) tends to 1.

Now we make the induction assumption that the theorem holds for system
size from 2 up to n — 1. We need the following lemma.

Lemma. If x = o(£(7Y), 2= oo, then
lim F(Y/B(sx,e™)=1for 0Sr=n—2.
A=

A9 = (1+ ) = +d o)

Proof. We get from (5)

FQy

‘ Blone ™

_ A - £() x |
- ﬁ,(.;”(sx,e =) (m) g A )

We have x < ¢, F(4)" if 2 > K, which together with the induction assumption
gives

I:':,f;* Disx,e ™) = B4 s, FQY, exp { — we F(Y))
> [+ wey + pse, ] — 8,

if 1> K, also. We here allow y = co only if s = 0, corresponding to the first
part of the theorem (define 0 0o =0). Thus the limit of the first factor of (8) is 1.

The mean value theorem gives
EB(sx + 2) = FQ) + sxF'(A + 0sx),

where 0 < 0 < 1. This shows that the second factor of (8) tends to 1, as does the
third of (7).

Now, since m = o( £(/)*~2), it follows that the second factor of (7) tends to 1.
The limit of the fourth factor, finally, is

- %(e'"'ﬁ(sl)),ﬂ =W+ pus.

Thus N
lim FU(sF@ =" exp{—wE(Y}) = [1 +w+ ps]".
peL

Now write
B (sm, ™

R

Jj=1,2,-,n—1. Since m = o(F()*~*="),1 £ j < n — 1, the theorem follows,
by the lemma, for j = 1, 2,---,n — 1. Finelly, for j =0 the statement follows
easily from the first equation of (3).

If we let G,(s,z) be the transform of the length of the busy period and the
number of served customers in it, we have

G(5,2) = 47X+ DED(s:2),

and obtain the same limiting behaviour for this bivariate distribution.

It remains to show that the induction assumption is valid for n= 2. Letting
Dy = B, = 1, (7) holds also for n =2, and the argument used shows that the
theorem holds for n =2 and by induction for all n = 2.

) o,

Remark. We note that as a byproduct of the development of the limit
result, (6) gives a formula for E(X{"}) and hence for E(Y{")) = uE(X{%).

We can easily see that By(0,1) = £(2)". A little manipulation gives

1= £R0,2) _ (= 1)D,-50,2)
T-z  B02 °

and hence, letting z—1—,
©) E(X{%) = (= 1)'D,»(0, DER)' .

We may also be interested in the limiting distribution when F(0)=p > 0.
Using (5) and (6) we may without great difficulties deduce




386 STIG 1. ROSENLUND
ag m £s,2)

_ (= zF@)(zp) = Py~ ") + Gp)' ™" = Gp)
(A =zFE)A =@ )+ =Gp)

4. The M/M][1 system

We take p, =1 and £(s) = B/(s + p), i.e., M /M [1 with service intensity
and mean service time p = 1 /B. Define as usual p = 1 /B. Here we have

Graor1=0, =P+ A+ p) e,

We may for example extract a factor /(s + 4 + f§) from the first row of By
while developing the determinant at the upper left corner, obtaining

(11) By(5,2) = By—y(5,2) = 2BA(s + 4+ f)*By-2(s,2).
One can easily solve this difference equation and obtain

(41— zBis + B)" gt — (a2 — zBXs +B)~)al
(s + 2+ B> — 4ziB)i(s + 2 + ¥

seen—1.

(12) By(s,2) =

where g,(s, ) and g,(s, z) are the roots of g* — (s + 4 + f)g + zAf =0, or
ay(s, ) =30+ 2+ B+ (s + 2+ ) — 4228,
ga(5,2) =3 (s + A+ B —((s + A+ P> — 4z2P)").
Also, if we divide (11) by By_, we obtain
W) EDu ) =B+ i+ B 2EIT6 D), nzk+d,
for the time and number of service phases needed to pass from a state in the
Markov chain to the state immediately below.
If we now take k = 0 and consider
Gu(s,2) = Blly(s,2) = ECe
where Y, is the busy period length and X, the number of served customers
during it, we have
- Gi(s2) = 2B(s + B,
Gis,2) = 2Bl(s + A+ B~ IG,oa(s,2)  nEZ2

~sTn Xn
)

The first relation, for no waiting-place, is immediate, and insertion of G, in the
second shows it to hold true for n = 2.

From (14) we may obtain a slightly different explicit formula than the one
following from (12). Defining ¢, ¢, as before we get
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2BLGs + B = a5, 24105, 2)" ' = (s + B = 045, D)aas, "]
(s + B = a2(5,2))41(5,2)" — (s + B — 41(5, 2))a2(s, 2)"

The formula is correct for (s, z) € [0, 00) x [0,1] exceptwhenp =z =s+1=1.
In order to calculate moments, it seems most suitable to move the denominator
of (14) to the left-hand side and perform the adequate number of differentiations;
this will give a relation a, = pa,_, + b,, where a, is the moment and b, is
known when the lower moments are known. Here we present results for the
case p# 1

EX,) = (1=p)(1-p)*
EY,) = (1L-p)8~'—p)"
(16)  var(X,) = p(1 +p)[1—@n—1)(1 = p)p"~*=p>=1](1 = p)=*
var(Y,) = ((1+p)(1 = p*) —4n(l = p)p") p=2(1 = p)~2
cov(X,,Y,) =(2p — (3n — Dp"+ (2n — 1)p"+ 1+ np™+2
=) =)

As far as the other variables (Y % X)) are concerned one may use the rep-
resentation, not only valid for M /M /1, if j > k,

(15) Gy(s,2) =

( J(!‘l‘)' (n)) - z (Y(n-r) X(n ") ;
where the terms are independent. This will give, for example,
a7 EX)=i(l=p) " = (" = p" (1= p) 2, j>0.

For M /M1 the variables considered have an application to the M /M [m
system with finite waiting-room, restricted to N places, that is, place for in all
N + m customers. If the service time d.f. is 1 — e™*, then Y{%*" with B here
equal to am represents the uninterrupted time when all m servers are busy.
This follows from the fact that the smallest of m independent exponentially
distributed variables with parameter « is exponentially distributed with
parameter am.

Note that for p <1 the limit, as n — o0, of (14) is equal to its value for an
infinite waiting room.

5. A trivariate distribution

The same kind of linear algebra may be used to include also the number of
customers not admitted during times between occurrences of states in the
Markov chain. We content oursclves with treating the case k = 0. For j = 1,2,
,n—1, let Y/” be the remaining busy time, X{" the number of served
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customers during this timz, and V,""the number of customers not admitted
during the samz tims, given that a customer has just left the system and j
customars excluding this one are in the system. Having obtained the joint
transform for these variables, the transform corresponding to the busy period
will follow from an equation similar to the first one of (3). Put

F(,x%,0) = PUYP <1} 0 {XP=x) 0 {7 = o)),

F(s,x,0) = J;me'“(l,F (1, x,v),
""(s,z W) = E@ X0y = E E 2 u® F{"™(s, x,0).
x=1 p=0
We simplify the notation:
0()) = o),
9/8) = Grrs1(s)

n the same way as we derived Equation (1) we obtain
‘
L0 = [ndre,
0

(e, 1,0) = 0, (o) #(1,0),
(18)
F(t,%,v)

.
Z Ur(‘[)Fr-)} 1t = 7,x — 1,0)dF(z)
3 rtl‘—]

t vtn=j
+f Y o(@F®(t —t,x—1,v—r+n—j) dF(z), X2 2.
0 r=n—j
From this relation F{" may be calculated by recursion in x. Taking transforms
gives
F(s,1,0) = g.,(s),
(19) E(s,%,0) = Z g,(:)ﬁ‘ Dl x—1,0)
ril-j
& E g,(s}F,f"_),(s,x —Lo—r+n-j), x22.
renmi
By recursion we may obtain £, especially
F™0,x,0) = PX{"=x, V"=1).

From (19) we may now obtain the joint transform in the same way as (3) is
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obtained from (2). We get a triple sum, in which we interchange the order of

summation between v and r. Leaving out details we state

B =% wa0B S an a2 va) A%,
r=0

20 j=12-n—1.

Here we define £¢"(s, z,u) = 1.

A solution by Cramer’s rule will give an ion exactly corresp to
(5). For M /M [1 the relation (11) will result again, as will (13). Considering
G,(s,z,u) = E(e ~*""z¥-u""), where ¥, is the number of customers not admitted
during a busy period of the M /M /1 system with place for n customers, we
obtain the remarkably simple generalisation of (14)

Gi(s,z,u) = zf(s + f+ 21 —u)~",
G(s,z,u) = zP(s+ 2+ B—2G,—y(s,z,0))"", n22.

(21) may of course be used to obtain formulas similar to (15) and (16). Dif-
ferentiation with respect to u gives

@) E(V) = pm.

o5

@
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